题目内容
设P为△ABC內的一点,且
=
+
.
(1)求△PBC与△ABC的面积之比;
(2)设
=x
+y
,求实数x,y的值.
| AP |
| 2 |
| 5 |
| AB |
| 1 |
| 5 |
| AC |
(1)求△PBC与△ABC的面积之比;
(2)设
| PA |
| PB |
| PC |
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:(1)如图所示,设
=
,
=
.由MP∥AC,可得
=
,同理可得
=
,可得
=
.得到
=
,即可得出
=
=
.进而得到△PBC与△ABC的面积之比;
(2)利用向量的三角形法则可得:
=
+
,
=
+
,可得
=
+
,与
=
+
比较即可得出.
| AM |
| 2 |
| 5 |
| AB |
| AN |
| 1 |
| 5 |
| AC |
| CF |
| CB |
| 2 |
| 5 |
| BE |
| BC |
| 1 |
| 5 |
| EF |
| BC |
| 2 |
| 5 |
| FP |
| CN |
| 1 |
| 2 |
| DP |
| DA |
| PF |
| AC |
| 2 |
| 5 |
(2)利用向量的三角形法则可得:
| PB |
| PA |
| AB |
| PC |
| PA |
| AC |
| PA |
| x |
| 1-x-y |
| AB |
| y |
| 1-x-y |
| AC |
| AP |
| 2 |
| 5 |
| AB |
| 1 |
| 5 |
| AC |
解答:
解:(1)如图所示,
设
=
,
=
.
∵MP∥AC,∴
=
,
同理可得
=
,
∴
=
.
∴
=
,
∴
=
=
.
∴△PBC与△ABC的面积之比=
;
(2)∵
=
+
,
=
+
,
∴
=x
+y
=x(
+
)+y(
+
),
∴
=
+
,
与
=
+
比较可得:
,解得
.
设
| AM |
| 2 |
| 5 |
| AB |
| AN |
| 1 |
| 5 |
| AC |
∵MP∥AC,∴
| CF |
| CB |
| 2 |
| 5 |
同理可得
| BE |
| BC |
| 1 |
| 5 |
∴
| EF |
| BC |
| 2 |
| 5 |
∴
| FP |
| CN |
| 1 |
| 2 |
∴
| DP |
| DA |
| PF |
| AC |
| 2 |
| 5 |
∴△PBC与△ABC的面积之比=
| 2 |
| 5 |
(2)∵
| PB |
| PA |
| AB |
| PC |
| PA |
| AC |
∴
| PA |
| PB |
| PC |
| PA |
| AB |
| PA |
| AC |
∴
| PA |
| x |
| 1-x-y |
| AB |
| y |
| 1-x-y |
| AC |
与
| AP |
| 2 |
| 5 |
| AB |
| 1 |
| 5 |
| AC |
|
|
点评:本题考查了向量的三角形法则、平行四边形法则、平行线分线段成比例定理、共面向量基本定理,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目