题目内容
17.若椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦点为F1,F2,点P在椭圆上,且满足|PO|2=|PF1|•|PF2|( O为坐标原点),则称点P为“●”点,则此椭圆上的“●”点有( )| A. | 8个 | B. | 4个 | C. | 2个 | D. | 0个 |
分析 由椭圆中${b^2}<|P{F_1}||P{F_2}|<{a^2}$,b≤|PO|≤a,b2≤|PO|2≤a2,因此满足条件的有四个点,
解答 解:${b^2}<|P{F_1}||P{F_2}|<{a^2}$,b≤|PO|≤a,b2≤|PO|2≤a2,因此满足条件的有四个点,
故选:B.
点评 本题主要考查椭圆的新定义问题,特别是焦半径的转化问题.考查计算能力.
练习册系列答案
相关题目
8.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为( )
| A. | $\frac{32}{5}$ | B. | 4 | C. | $\frac{16}{5}$ | D. | $\frac{8}{5}$ |
5.已知圆的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是( )
| A. | $-\frac{4}{3}$ | B. | $-\frac{5}{3}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{5}{4}$ |
6.
某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.
(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.