题目内容

12.△ABC的内角A、B、C所对的边分别为a、b、c,若a=1,b+c=$\sqrt{6}$,且cosA=$\frac{1}{4}$,则△ABC的面积为$\frac{\sqrt{15}}{4}$.

分析 利用同角三角函数关系式可求sinA,由余弦定理解得bc,利用三角形面积公式即可得解.

解答 解:△ABC中,∵a=1,b+c=$\sqrt{6}$,且cosA=$\frac{1}{4}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{15}}{4}$,
∴由余弦定理a2=b2+c2-2bccosA,可得:1=b2+c2-$\frac{1}{2}$bc=(b+c)2-$\frac{5}{2}$bc=6-$\frac{5}{2}$bc,解得:bc=2.
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×$2×$\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{4}$.
故答案为:$\frac{\sqrt{15}}{4}$.

点评 本题主要考查了同角三角函数关系式,余弦定理,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网