ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨sin$\frac{x}{2}$£¬$\frac{1}{2}$£©£¬$\overrightarrow{b}$=£¨$\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$£¬1£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬¡÷ABCÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£®£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôf£¨B+C£©=1£¬a=$\sqrt{3}$£¬b=1£¬Çó¡÷ABCµÄÃæ»ýS£®
·ÖÎö £¨1£©ÀûÓÃÊýÁ¿»ý¹«Ê½£¬½áºÏ¸¨Öú½Ç¹«Ê½£¬¼´¿ÉÇóf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÏÈÇó³öB£¬¿ÉµÃC£¬ÔÙÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$f£¨x£©=\overrightarrow a•\overrightarrow b$=$\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}$-$si{n}^{2}\frac{x}{2}$+$\frac{1}{2}$=sin£¨x+$\frac{¦Ð}{6}$£©£¬
Áî2k¦Ð-$\frac{¦Ð}{2}$¡Üx+$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬
½âµÃ2k¦Ð-$\frac{2¦Ð}{3}$¡Üx¡Ü2k¦Ð+$\frac{¦Ð}{3}$
ËùÒÔº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ[2k¦Ð-$\frac{2¦Ð}{3}$£¬2k¦Ð+$\frac{¦Ð}{3}$]£¨k¡ÊZ£©£®
£¨2£©ÒòΪf£¨B+C£©=1£¬ËùÒÔsin£¨B+C+$\frac{¦Ð}{6}$£©=1£¬
ÓÖB+C¡Ê£¨0£¬¦Ð£©£¬B+C+$\frac{¦Ð}{6}$¡Ê£¨$\frac{¦Ð}{6}$£¬$\frac{7¦Ð}{6}$£©£¬
ËùÒÔB+C+$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬B+C=$\frac{¦Ð}{3}$£¬ËùÒÔA=$\frac{2¦Ð}{3}$£¬
ÓÉÕýÏÒ¶¨Àí$\frac{a}{sinA}=\frac{b}{sinB}$´úÈ룬µÃµ½sinB=$\frac{1}{2}$
µÃB=$\frac{¦Ð}{6}$»òÕßB=$\frac{5¦Ð}{6}$£¬ÒòΪA=$\frac{2¦Ð}{3}$Ϊ¶Û½Ç£¬ËùÒÔB=$\frac{5¦Ð}{6}$ÉáÈ¥
ËùÒÔB=$\frac{¦Ð}{6}$£¬µÃC=$\frac{¦Ð}{6}$£®
ËùÒÔ£¬¡÷ABCµÄÃæ»ýS=$\frac{1}{2}absinC$=$\frac{1}{2}•\sqrt{3}•1•\frac{1}{2}$=$\frac{\sqrt{3}}{4}$£®
µãÆÀ ±¾Ì⿼²éÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁ½½ÇºÍÓë²îµÄÈý½Çº¯Êý¼äµÄ¹ØÏµ£¬¿¼²éÕýÏÒ¶¨Àí£¬ÊôÓÚÖеµÌ⣮
| A£® | 2 | B£® | 3 | C£® | 5 | D£® | 6 |