题目内容

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c,若直线y=x-c与椭圆C在第一象限内的一个交点M满足∠F1MF2=2∠MF1F2,则该椭圆的离心率为(  )
A、
6
-
3
B、
3
2
C、
6
-
3
2
D、
6
-
2
2
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:在△MF1F2中,由正弦定理可得
2c
sin2θ
=
|MF2|
sinθ
=
|MF1|
sin3θ
=
2a
sinθ+sin3θ
,可得e=
c
a
=
2sinθcosθ
4sinθ-4sin3θ
=
1
2cosθ
,而cosθ=cos15°=
6
+
2
4
,即可得出.
解答: 解:如图所示,
设∠MF1F2=θ.
∵tan3θ=1,
∴θ=15°.
∴cos30°=2cos215°-1,
∴cos15°=
6
+
2
4

在△MF1F2中,由正弦定理可得
2c
sin2θ
=
|MF2|
sinθ
=
|MF1|
sin3θ
=
2a
sinθ+sin3θ

∴e=
c
a
=
2sinθcosθ
4sinθ-4sin3θ
=
1
2cosθ
=
2
6
+
2
=
6
-
2
2

故选:D.
点评:本题考查了正弦定理、椭圆的定义及其性质、倍角公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网