题目内容

11.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,且C=$\frac{π}{4}$,则△ABC的面积为$\sqrt{3}+1$.

分析 由已知利用正弦定理可求sinB,结合B的范围,利用特殊角的三角函数值可求B,利用三角形内角和定理可求A,进而利用三角形面积公式即可计算得解.

解答 解:由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}⇒sinB=\frac{bsinC}{c}=\frac{1}{2}$,
又c>b,且B∈(0,π),
所以$B=\frac{π}{6}$,
所以$A=\frac{7π}{12}$,
所以$S=\frac{1}{2}bcsinA=\frac{1}{2}×2×2\sqrt{2}sin\frac{7π}{12}=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{6}+\sqrt{2}}}{4}=\sqrt{3}+1$.
故答案为:$\sqrt{3}+1$.

点评 本题主要考查了正弦定理,特殊角的三角函数值,三角形内角和定理,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网