题目内容

16.已知等比数列{an}中,a1=2,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项sn

分析 (1)等比数列{an}中,a1=2,a3+2是a2和a4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果;
(2)把(1)中求得的结果代入bn=nan,求出bn,利用错位相减法求出Tn

解答 解:(1)设数列{an}的公比为q,
由题意知:2(a3+2)=a2+a4
∴q3-2q2+q-2=0,即(q-2)(q2+1)=0.
∴q=2,即an=2•2n-1=2n
(2)bn=n•2n
∴Sn=1•2+2•22+3•23+…+n•2n.①
2Sn=1•22+2•23+3•24+…+(n-1)•2n+n•2n+1.②
①-②得-Sn=21+22+23+24+…+2n-n•2n+1
=-2-(n-1)•2n+1
∴Sn=2+(n-1)•2n+1

点评 考查等比数列求通项公式和等差、等比中项的概念及错位相减法求数列的前项和Sn,等差数列和等比数列之间的相互转化,考查运算能力,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网