题目内容
9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,且满足(b-a)(sinB+sinA)=(b-a)sinC,cosC=$\frac{\sqrt{3}}{3}$,a=3.(1)求sinB的值;
(2)求△ABC的面积.
分析 (1)由(b-a)(sinB+sinA)=(b-a)sinC,利用正弦定理可得:(b-a)(b+a)=(b-a)c,由于a+b≠c,可得b=a,再利用余弦定理可得c,进而得出cosB.再利用正弦定理即可得出.
(2)利用S△ABC=$\frac{1}{2}absinC$即可得出.
解答 解:(1)∵(b-a)(sinB+sinA)=(b-a)sinC,
∴(b-a)(b+a)=(b-a)c,
∵a+b≠c,
∴b=a=3,
∴c2=a2+b2-2abcosC=2×32-2×32×$\frac{\sqrt{3}}{3}$=18-6$\sqrt{3}$,
∵cosC=$\frac{\sqrt{3}}{3}$,∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{6}}{3}$.
由正弦定理可得:$\frac{3}{sinB}=\frac{\sqrt{18-6\sqrt{3}}}{\frac{\sqrt{6}}{3}}$,
解得sinB=$\sqrt{\frac{3+\sqrt{3}}{6}}$=$\frac{\sqrt{18+6\sqrt{3}}}{6}$.
(2)S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×3×3×\frac{\sqrt{6}}{3}$=$\frac{3\sqrt{6}}{2}$.
点评 本题考查了正弦定理余弦定理、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.已知F1,F2分别是双曲线Γ;$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,O为双曲线Γ的对称中心,M,N分别在双曲线Γ的两条渐近线上,∠MF2O=∠MNO=90°,若NF2∥OM,则双曲线r的渐近线方程为( )
| A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±$\sqrt{2}$x | D. | y=±$\sqrt{3}$x |
2.已知1-x+x2-x3+…+x8=a0+a1(x+1)+a2(x+1)2+…+an(x+1)8,则a2=( )
| A. | 120 | B. | 84 | C. | 72 | D. | 48 |