题目内容

8.圆O的半径为3,一条弦AB=4,P为圆O上任意一点,则$\overrightarrow{AB}$•$\overrightarrow{BP}$的取值范围为(  )
A.[-16,0]B.[0,16]C.[-4,20]D.[-20,4]

分析 如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.利用垂径定理可得BC=$\frac{1}{2}$AB=2.可得cos∠OBA.利用向量的三角形法则,可得$\overrightarrow{AB}$•$\overrightarrow{BP}$=$\overrightarrow{AB}•(\overrightarrow{OP}-\overrightarrow{OB})$=$\overrightarrow{AB}•\overrightarrow{OP}-\overrightarrow{AB}•\overrightarrow{OB}$,代入数量积即可得出$\overrightarrow{AB}$•$\overrightarrow{BP}$的取值范围.

解答 解:如图所示,连接OA,OB.
过点O作OC⊥AB,垂足为C.
则BC=$\frac{1}{2}$AB=2.
∴cos∠OBA=$\frac{2}{3}$.
∴$\overrightarrow{AB}$•$\overrightarrow{BP}$=$\overrightarrow{AB}•(\overrightarrow{OP}-\overrightarrow{OB})$=$\overrightarrow{AB}•\overrightarrow{OP}-\overrightarrow{AB}•\overrightarrow{OB}$
=$|\overrightarrow{AB}||\overrightarrow{OP}|•cos<\overrightarrow{AB},\overrightarrow{OP}>$$-|\overrightarrow{AB}||\overrightarrow{OB}|•cos∠OBA$.
=$4×3×cos<\overrightarrow{AB},\overrightarrow{OP}>-4×3×\frac{2}{3}$=$12cos<\overrightarrow{AB},\overrightarrow{OP}>-8$.
∵cos$<\overrightarrow{AB},\overrightarrow{OP}>$∈[-1,1],
∴12cos$<\overrightarrow{AB},\overrightarrow{OP}>$-8∈[-20,4].
故选:D.

点评 本题考查了向量的数量积运算、垂径定理、向量共线定理,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网