题目内容

16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,当$x∈[0,\frac{π}{2}]$时,满足f(x)=1的x的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{5π}{24}$D.$\frac{π}{3}$

分析 由图象可得A=2,根据周期可得ω,由f(-$\frac{π}{6}$)=0及|φ|<π可求得φ,从而得到f(x)解析式,由f(x)=1及x∈[0,$\frac{π}{2}$]可解此方程.

解答 解:由题意可得A=2,其周期T=2×[$\frac{π}{3}$-(-$\frac{π}{6}$)]=π,
所以ω=2,
则f(x)=2sin(2x+φ),
由f(-$\frac{π}{6}$)=0得2sin(-$\frac{π}{3}$+φ)=0,又|φ|<π,所以φ=$\frac{π}{3}$,
故f(x)=2sin(2x+$\frac{π}{3}$),
由x∈[0,$\frac{π}{2}$]得2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4}{3}$π],
由f(x)=1即2sin(2x+$\frac{π}{3}$)=1得sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,所以2x+$\frac{π}{3}$=$\frac{5}{6}$π,解得x=$\frac{π}{4}$,
故选:B.

点评 本题考查由y=Asin(ωx+φ)的部分图象求其函数解析式、解简单的三角方程,考查学生的识图能力及用图能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网