题目内容

6.函数$f(x)=\frac{2x-3}{3x+1},x∈(-1,-\frac{1}{3})∪(-\frac{1}{3},1)$的值域是(  )
A.$(-∞,-\frac{1}{4})∪(\frac{5}{2},+∞)$B.$(-\frac{1}{4},\frac{5}{2})$C.$(-\frac{1}{4},0)∪(\frac{5}{2},+∞)$D.$(-∞,-\frac{1}{4})∪(0,\frac{5}{2})$

分析 分离常数法化简f(x)=$\frac{\frac{2}{3}(3x+1)-\frac{11}{3}}{3x+1}$=$\frac{2}{3}$-$\frac{11}{3(3x+1)}$,从而求函数的值域.

解答 解:f(x)=$\frac{\frac{2}{3}(3x+1)-\frac{11}{3}}{3x+1}$=$\frac{2}{3}$-$\frac{11}{3(3x+1)}$,
∵x∈(-1,-$\frac{1}{3}$)∪(-$\frac{1}{3}$,1),
∴3x+1∈(-2,0)∪(0,4),
∴$\frac{11}{3(3x+1)}$≤-$\frac{11}{6}$或$\frac{11}{3(3x+1)}$≥$\frac{11}{12}$,
∴$\frac{2}{3}$-$\frac{11}{3(3x+1)}$≥$\frac{5}{2}$或$\frac{2}{3}$-$\frac{11}{3(3x+1)}$≤-$\frac{1}{4}$;
故选:A.

点评 本题考查了函数的值域的求法应用,利用了分离常数法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网