ÌâÄ¿ÄÚÈÝ
4£®ÔÚ¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}ÖУ¬ÆäǰnÏîºÍΪSn£¬ÒÑÖªa3=5£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ®£¨¢ñ£©ÇóanºÍSn£»
£¨¢ò£©¼Ç${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{a{\;}_2{a_3}}}+¡\frac{1}{{{a_n}{a_{n+1}}}}$£¬Èô${T_n}¡Ý\frac{9}{{{S_{n+k}}}}$¶ÔÈÎÒâÕýÕûÊýnºã³ÉÁ¢£¬ÇóÕýÕûÊýkµÄ×îСֵ£®
·ÖÎö £¨¢ñ£©Éè{an}µÄ¹«²îΪd£¬ÔËÓõȲîÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½£¬½áºÏµÈ±ÈÊýÁеÄÖÐÏîµÄÐÔÖÊ£¬½â·½³Ì¿ÉµÃÊ×ÏîºÍ¹«²î£¬½ø¶øµÃµ½ËùÇó£»
£¨¢ò£©ÇóµÃ$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬ÔËÓÃÁÑÏîÏàÏûÇóºÍ¿ÉµÃTn£¬ÔËÓòÎÊý·ÖÀëºÍÊýÁеĵ¥µ÷ÐÔ£¬¿ÉµÃ×îСֵ£¬¼´¿ÉµÃµ½ÕýÕûÊýkµÄ×îСֵ£®
½â´ð ½â£º£¨¢ñ£©Éè{an}µÄ¹«²îΪd£¬
ÓÉa3=5£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ¬
¿ÉµÃa22=a1a5£¬
Ôò$\left\{\begin{array}{l}{a_1}+2d=5\\{£¨{a_1}+d£©^2}={a_1}£¨{a_1}+4d£©\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{a_1}=1\\ d=2\end{array}\right.$£¬
¡àan=2n-1£¬Sn=$\frac{1}{2}$£¨1+2n-1£©n£¬
¿ÉµÃ${S_n}={n^2}$£»
£¨¢ò£©$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬
${T_n}=\frac{1}{2}£¨1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+¡+\frac{1}{2n-1}-\frac{1}{2n+1}£©=\frac{n}{2n+1}$£¬
¡à$\frac{n}{2n+1}¡Ý\frac{9}{{{{£¨n+k£©}^2}}}$£¬
¡à${£¨n+k£©^2}¡Ý9£¨2+\frac{1}{n}£©$ºã³ÉÁ¢£¬
¡à$k¡Ý3\sqrt{2+\frac{1}{n}}-n$£¬
$¼Ç{c_n}=3\sqrt{2+\frac{1}{n}}-n$£¬Ôò{cn}ÊǵݼõÊýÁУ¬
¡à$k¡Ý{c_1}=3\sqrt{3}-1$£¬
¡àkmin=5£®
µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²éµÈ±ÈÊýÁеÄÖÐÏîµÄÐÔÖÊ£¬ÒÔ¼°ÊýÁеÄÇóºÍ·½·¨£ºÁÑÏîÏàÏûÇóºÍ£¬Í¬Ê±¿¼²é²»µÈʽºã³ÉÁ¢ÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓ÷ÖÀë²ÎÊýºÍÊýÁеĵ¥µ÷ÐÔ£¬ÇóµÃ×îÖµ£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{2}{7}$ | B£® | $\frac{3}{7}$ | C£® | $\frac{4}{7}$ | D£® | $\frac{5}{7}$ |
| A£® | $\frac{{{2^{99}}-2}}{3}$ | B£® | $\frac{{{2^{100}}-2}}{3}$ | C£® | $\frac{{{2^{101}}-2}}{3}$ | D£® | $\frac{{{2^{102}}-2}}{3}$ |
| A£® | $\frac{{\sqrt{3}}}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
| A£® | $-\frac{3}{2}+\frac{3}{2}i$ | B£® | $-\frac{3}{2}-\frac{3}{2}i$ | C£® | $-\frac{3}{2}+3i$ | D£® | $-\frac{3}{2}-3i$ |