题目内容

14.设x1,x2∈(0,$\frac{π}{2}$),且x1≠x2,下列不等式中成立的是(  )
①$\frac{1}{2}(sin{x}_{1}+sin{x}_{2})$>sin$\frac{{x}_{1}+{x}_{2}}{2}$;
②$\frac{1}{2}$(cosx1+cosx2)>cos$\frac{{x}_{1}+{x}_{2}}{2}$;
③$\frac{1}{2}$(tanx1+tanx2)>tan$\frac{{x}_{1}+{x}_{2}}{2}$;
④$\frac{1}{2}$($\frac{1}{tan{x}_{1}}$+$\frac{1}{tan{x}_{2}}$)>$\frac{1}{tan\frac{{x}_{1}+{x}_{2}}{2}}$.
A.①②B.③④C.①④D.②③

分析 分别取${x}_{1}=\frac{π}{4}$,x2=$\frac{π}{3}$验证①②不成立,取x1=$\frac{π}{3}$,x2=$\frac{π}{6}$验证③④成立,即可得答案.

解答 解:对于①,$\frac{1}{2}(sin{x}_{1}+sin{x}_{2})$>sin$\frac{{x}_{1}+{x}_{2}}{2}$,取${x}_{1}=\frac{π}{4}$,x2=$\frac{π}{3}$,则$\frac{1}{2}(sin{x}_{1}+sin{x}_{2})$
=$\frac{\sqrt{2}+\sqrt{3}}{4}<sin\frac{7π}{24}<sin\frac{π}{3}=\frac{\sqrt{3}}{2}$,故①不成立,
对于②,$\frac{1}{2}$(cosx1+cosx2)>cos$\frac{{x}_{1}+{x}_{2}}{2}$,取${x}_{1}=\frac{π}{4}$,x2=$\frac{π}{3}$,则$\frac{1}{2}$(cosx1+cosx2
=$\frac{\sqrt{2}+1}{4}<cos\frac{7π}{24}<cos\frac{π}{6}=\frac{\sqrt{3}}{2}$,故②不成立,
对于③,$\frac{1}{2}$(tanx1+tanx2)>tan$\frac{{x}_{1}+{x}_{2}}{2}$,取x1=$\frac{π}{3}$,x2=$\frac{π}{6}$,则$\frac{1}{2}$(tanx1+tanx2)=$\frac{2\sqrt{3}}{3}$>$tan\frac{π}{4}=1$,故③成立,
对于④,$\frac{1}{2}$($\frac{1}{tan{x}_{1}}$+$\frac{1}{tan{x}_{2}}$)>$\frac{1}{tan\frac{{x}_{1}+{x}_{2}}{2}}$,取x1=$\frac{π}{3}$,x2=$\frac{π}{6}$,则$\frac{1}{2}$($\frac{1}{tan{x}_{1}}$+$\frac{1}{tan{x}_{2}}$)=$\frac{2\sqrt{3}}{3}$>$tan\frac{π}{4}=1$,故④成立.
∴不等式中成立的是:③④.
故选:B.

点评 本题考查了三角函数的单调性,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网