题目内容

4.若数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,那么就称数列{an}具有相纸P,已知数列{an}具有性质P,且a1=1,a2=2,a3=3,a5=2,a6+a7+a8=21,则a2017=15.

分析 根据题意,由于数列{an}具有性质P以及a2=a5=2,分析可得a3=a6=3,a4=a7,a5=a8=3,结合题意可以将a6+a7+a8=21变形为a3+a4+a5=21,计算可得a4的值,进而分析可得a3=a6=a9=…a3n=3,a4=a7=a6=…a3n+1=15,a5=a8=…a3n+2=3,(n≥1);分析可得a2017的值.

解答 解:根据题意,数列{an}具有性质P,且a2=a5=2,
则有a3=a6=3,a4=a7,a5=a8=3,
若a6+a7+a8=21,可得a3+a4+a5=21,则a4=21-3-3=15,
进而分析可得:a3=a6=a9=…a3n=3,a4=a7=a6=…a3n+1=15,a5=a8=…a3n+2=3,(n≥1)
则a2017=a3×672+1=15,
故答案为:15.

点评 本题考查数列的表示方法,关键分析什么样的数列具有性质P,并且求出a4的值,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网