题目内容
9.设数列{an}是各项为正数的等比数列,Sn为其前n项和,已知a2a4=16,$\frac{{a}_{4}+{a}_{5}+{a}_{8}}{{a}_{1}+{a}_{2}+{a}_{5}}$=8,则S5=( )| A. | 40 | B. | 20 | C. | 31 | D. | 43 |
分析 利用等比数列的通项公式及其性质即可得出.
解答 解:设等比数列{an}的公比为q>0,∵a2a4=16,$\frac{{a}_{4}+{a}_{5}+{a}_{8}}{{a}_{1}+{a}_{2}+{a}_{5}}$=8,
∴${a}_{1}^{2}{q}^{4}$=16,q3=8,解得q=2,a1=1.
则S5=$\frac{{2}^{5}-1}{2-1}$=31.
故选:C.
点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
20.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B“是“x∈C“的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
17.
如图,点F1、F2是椭圆C1、C2的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2,椭圆C1与双曲线C2的离心率分别为e1、e2,则( )
| A. | e22=$\frac{1+{{e}_{1}}^{4}}{1-{{e}_{1}}^{2}}$ | B. | e22=$\frac{{2{e}_{1}}^{4}}{1-{{e}_{1}}^{2}}$ | ||
| C. | e22=$\frac{1-{{e}_{1}}^{4}}{2{{e}_{1}}^{2}-1}$ | D. | e22=$\frac{{{e}_{1}}^{4}}{2{{e}_{1}}^{2}-1}$ |
1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与直线y=x+3只有一个公共点,且椭圆的离心率为$\frac{{\sqrt{5}}}{5}$,则椭圆C的方程为( )
| A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ | C. | $\frac{x^2}{9}+\frac{y^2}{5}=1$ | D. | $\frac{x^2}{25}+\frac{y^2}{20}=1$ |
18.《九章算术》有这样一个问题:今有女子善织,日增等尺,第二日、第五日、第八日所织之和为十五尺,九日共织尺数是( )
| A. | 5 | B. | 15 | C. | 45 | D. | 10 |