题目内容

3.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.

分析 根据集合A,求得集合A,由A∪B且A∩B求出集合B,根据不等式的解集与方程根之间的关系,利用韦达定理即可求得a,b的值,从而求得结果.

解答 解:集合A={x|x2+x>0}={x|x<-1或x>0}
∵A∪B=R
∴B中的元素至少有{x|-1≤x≤0}
∵A∩B={x|0<x≤2},
∴B={x|-1≤x≤2}
∴-1,2是方程x2+ax+b=0的两个根,
∴a=-1,b=-2
即a,b的值分别是-1,-2.

点评 本题考查了集合的混合运算,对于一元二次不等式的求解,根据已知A∪B和A∩B的范围,求出集合B是解题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网