题目内容

9.若an是(2+x)n(n∈N*,n≥2,x∈R)展开式中x2项的二项式系数,则$\lim_{n→∞}(\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n})$=2.

分析 (2+x)n(其中n=2,3,4,…)的展开式,Tr+1,令r=2,可得an,再利用求和公式化简,利用数列的极限即可得出.

解答 解:(2+x)n(其中n=2,3,4,…)的展开式,Tr+1=${C}_{n}^{r}{2}^{n-r}{x}^{r}$,令r=2,可得:T3=2n-2${C}_{n}^{2}$x2
∴an是二项式(2+x)n(其中n=2,3,4,…)的展开式中x的二项式系数,
∴an=${C}_{n}^{2}$=$\frac{n(n-1)}{2}$.
则$\lim_{n→∞}(\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n})$=$\underset{lim}{n→∞}$2$(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n-1}-\frac{1}{n})$=$\underset{lim}{n→∞}$$(2-\frac{2}{n})$=2.
故答案为:2.

点评 本题考查二项式定理的应用,数列求和,数列的极限的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网