题目内容
15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天,若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为5040.(用数字作答)分析 根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.
解答 解:根据题意,分2种情况讨论,
若只有甲乙其中一人参加,有C21•C64•A55=3600种情况;
若甲乙两人都参加,有C22•A63•A42=1440种情况,
则不同的安排种数为3600+1440=5040种,
故答案为:5040.
点评 本题考查组合的应用,要灵活运用各种特殊方法,如捆绑法、插空法.
练习册系列答案
相关题目
18.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为( )
| A. | 12 | B. | 24 | C. | 36 | D. | 48 |
19.甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用x,y,z表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w=x+y+z的值平定蜜瓜的顶级,若w≥4,则为一级;若2≤w≤3,则为二级;若0≤w≤1,则为三级,今年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:
(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.
| 种植地编号 | A | B | C | D | E |
| (x,y,z) | (1,0,0) | (2,2,1) | (0,1,1) | (2,0,2) | (1,1,1) |
| 种植地编号 | F | G | H | I | J |
| (x,y,z) | (1,1,2) | (2,2,2) | (0,0,1) | (2,2,1) | (0,2,1) |
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.
3.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若x2+y2+2x≥k恒成立,则实数k的最大值为( )
| A. | 40 | B. | 9 | C. | 8 | D. | $\frac{7}{2}$ |
20.在等比数列{an}中,a1=2,公比q=2,若am=a1a2a3a4(m∈N*),则m=( )
| A. | 11 | B. | 10 | C. | 9 | D. | 8 |
4.已知x,y∈R,( )
| A. | 若|x-y2|+|x2+y|≤1,则${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
| B. | 若|x-y2|+|x2-y|≤1,则${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
| C. | 若|x+y2|+|x2-y|≤1,则${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ | |
| D. | 若|x+y2|+|x2+y|≤1,则${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ |