题目内容

已知公差不为0的等差数列{an}的首项a1=2,且
1
a1
1
a2
1
a4
成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+2b2+22b3+…+2n-1bn=an,求数列{nbn}的前n项和Tn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)利用等比数列的性质列出方程求得公比,即可得出结论;
(2)利用错位相减法求得数列的和即可.
解答: 解:(1)设等差数列{an}的公差为d,
(
1
a2
)2
=
1
a1
1
a4
,得(a1+d)2=a1(a1+3d).
因为d≠0,所以d=a1=2,
所以an=2n.(4分)
(2)b1+2b2+4b3+…+2n-1bn=an
b1+2b2+4b3+…+2n-1bn+2nbn+1=an+1
②-①得:2n•bn+1=2.
∴bn+1=21-n
当n=1时,b1=a1=2,∴bn=22-n.(8分)
Tn=
1
2-1
+
2
20
+
3
21
+…+
n
2n-2

1
2
Tn=
1
20
+
2
21
+
3
22
+…+
n
2n-1
,上两式相减得
1
2
Tn=2+
1
20
+
1
21
+
1
22
+…+
1
2n-2
-
n
2n-1
=2+2•(1-
1
2n-1
)-
n
2n-1

∴Tn=8-
n+2
2n-2
.(12分)
点评:本题主要考查等比数列的性质及数列求和的方法错位相减法知识,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网