题目内容

已知f(logax)=
a
a2-1
(x-
1
x
)(a>0,且a≠1)
(1)求f(x);
(2)判断并证明f(x)的奇偶性与单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)>0恒成立,求k的取值范围.
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:(1)利用换元法,即可求f(x)的解析式;
(2)根据函数奇偶性和单调性的定义即可证明f(x)的奇偶性与单调性;
(3)根据函数奇偶性和单调性的性质将不等式f(t2-2t)+f(2t2-k)>0进行转化,求k的取值范围.
解答: 解:(1)令t=logax(t∈R)
x=at,f(t)=
a
a2-1
(at-a-t)

f(x)=
a
a2-1
(ax-a-x)
(x∈R),
(2)∵x∈R,f(-x)=
a
a2-1
(a-x-ax)=-
a
a2 -1
(ax-a-x)=-f(x)

∴函数f(x)为奇函数.    
设x1<x2
若a>1,f(x2)-f(x1)=
a
a2-1
[ax2-a-x2-ax1+a-x1]=
a
a2-1
[(ax2-ax1)(1+
1
ax1ax2
)],
∵a>1,x1<x2,∴ax1ax2ax2-ax1>0,ax1ax2>0
a
a2-1
>0

∴f(x2)-f(x1)>0,即f(x2)>f(x1
类似可证明当0<a<1时,f(x2)>f(x1),
综上,无论a>1或0<a<1,f(x)在R上都是增函数. 
(3)不等式化为f(t2-2t)>-f(2t2-k),
即f(t2-2t)>f(k-2t2
∵f(x)在R上都是增函数,
∴t2-2t>k-2t2对t∈R恒成立
即3t2-2t-k>0对t∈R恒成立,
△=4+12k<0,k<-
1
3

故k的取值范围(-∞,-
1
3
)
点评:本题主要考查函数奇偶性和单调性的判断以及不等式恒成立的证明,根据函数奇偶性和单调性的定义是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网