题目内容
8.$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2=20.分析 化根式为分数指数幂,然后利用对数的运算性质化简求值.
解答 解:$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2
=$2{7}^{\frac{2}{3}}-3×lo{g}_{2}{2}^{-3}+2lg5+2lg2$
=9-3×(-3)+2=20.
故答案为:20.
点评 本题考查对数的运算性质,是基础的计算题.
练习册系列答案
相关题目
13.设命题p:?x<0,x2≥1,则?p为( )
| A. | ?x≥0,x2<1 | B. | ?x<0,x2<1 | C. | ?x≥0,x2<1 | D. | ?x<0,x2<1 |
20.集合A={α|α=kπ+$\frac{π}{2}$,k∈Z}与集合B={α|α=2kπ±$\frac{π}{2}$,k∈Z}的关系是( )
| A. | A=B | B. | A⊆B | C. | B⊆A | D. | 以上都不对 |
17.在等差数列{an}中,a1=2,公差为d,则“d=2”是“a1,a2,a4成等比数列”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
18.已知$\frac{π}{4}<α<\frac{3π}{4}$,$sin(α-\frac{π}{4})=\frac{4}{5}$,则cosα=( )
| A. | $\frac{{\sqrt{2}}}{10}$ | B. | $-\frac{{\sqrt{2}}}{10}$ | C. | $\frac{{7\sqrt{2}}}{10}$ | D. | $-\frac{{\sqrt{2}}}{5}$ |