题目内容
13.设命题p:?x<0,x2≥1,则?p为( )| A. | ?x≥0,x2<1 | B. | ?x<0,x2<1 | C. | ?x≥0,x2<1 | D. | ?x<0,x2<1 |
分析 根据含有量词的命题的否定进行判断即可.
解答 解:特称命题的否定是全称命题,
∴?p:?x∈R,都有x2<1.
故选:B.
点评 本题主要考查含有量词的命题的否定,比较基础.
练习册系列答案
相关题目
18.对任意的实数x,若[x]表示不超过x的最大整数,则“-1<x-y<1”是“[x]=[y]”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
5.数列{an}的通项公式为an=$\frac{1}{{n}^{2}+2n}$,其前n项和为Sn,则S10的值为( )
| A. | 1-$\frac{1}{12}$ | B. | $\frac{1}{2}$(1-$\frac{1}{12}$) | C. | $\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{12}$) | D. | $\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{11}$-$\frac{1}{12}$) |