题目内容

10.过抛物线y2=4x的顶点O作两条互相垂直的弦OA、OB,求弦AB的中点M的轨迹方程.

分析 设直线OA的方程为y=kx(k≠0),代入抛物线方程,求得交点A,再设出直线OB的方程,可得交点B,再由中点坐标公式,运用平方消元,即可得到中点的轨迹方程.

解答 解:设M(x,y),直线OA的斜率为k(k≠0),则直线OB的斜率为$-\frac{1}{k}$.
直线OA的方程为y=kx,由$\left\{\begin{array}{l}y=kx\\{y^2}=2px\end{array}\right.$解得$\left\{\begin{array}{l}x=\frac{2p}{k^2}\\ y=\frac{2p}{k}\end{array}\right.$,即$A(\frac{2p}{k^2},\frac{2p}{k})$,
同理可得B(2pk2,-2pk).
由中点坐标公式,得$\left\{\begin{array}{l}x=\frac{p}{k^2}+p{k^2}\\ y=\frac{p}{k}-pk\end{array}\right.$,消去k,得y2=p(x-2p),
此即点M的轨迹方程y2=2(x-4),

点评 本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,求交点,同时考查两直线垂直的条件:斜率之积为-1,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网