题目内容

6.设f(x)<0是定义在R上的奇函数,且f(2)<0,当x>0时,有$\frac{xf′(x)-f(x)}{{x}^{2}}$<0恒成立,则不等式x2f(x)>0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

分析 构造函数,通过$\frac{xf′(x)-f(x)}{{x}^{2}}$<0化为[$\frac{f(x)}{x}$]′<0;然后利用导函数的正负性,可判断函数y=$\frac{f(x)}{x}$在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则x2f(x)>0?f(x)>0的解集即可求得.

解答 解:因为当x>0时,有$\frac{xf′(x)-f(x)}{{x}^{2}}$<0恒成立,即[$\frac{f(x)}{x}$]′<0恒成立,
所以$\frac{f(x)}{x}$在(0,+∞)内单调递减.
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集:(-∞,-2)∪(0,2).
故选:D.

点评 本题主要考查了函数单调性与奇偶性的应用.在判断函数的单调性时,常可利用导函数来判断.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网