题目内容

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组频数
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合计100
(1)列出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
考点:极差、方差与标准差,频率分布直方图,众数、中位数、平均数
专题:综合题,概率与统计
分析:(1)根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图;
(2)由频率分布表可得纤度落在[1.38,1.42]、[1.42,1.46]、[1.46,1.50]中的概率,将其相加[1.38,1.50]中的概率,由频率分布直方图可以估算纤度小于1.40的频数,由频率与频数的关系,计算可得纤度小于1.40的概率.
(3)根据众数是频率分布直方图中最高矩形的底边中点的横坐标即得.
解答: 解:(1)根据题意,补充频率分布表可得:
分组频数频率
[1.30,1.34)40.04
[1.34,1.38)250.25
[1.38,1.42)300.30
[1.42,1.46)290.29
[1.46,1.50)100.10
[1.50,1.54)20.02
合计1001.00
进而可以作频率直方图可得:

(2)由频率分布表,可得纤度落在[1.38,1.42]中的概率为0.3,
纤度落在[1.42,1.46]中的概率为0.29,
纤度落在[1.46,1.50]中的概率为0.10,
则纤度落在[1.38,1.50]中的概率约为0.30+0.29+0.10=0.69,
由频率分布表可得,纤度小于1.40的频数约为4+25+
1
2
×30=44,则纤度小于1.40的概率约为0.44.
(3)众数是频率分布直方图中最高矩形的底边中点的横坐标,
∴中间的两个矩形最高,所以众数是1.40,中位数:1.408,
平均数:1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.
点评:本题考查频率分布直方图的作法与运用,关键是正确理解频率分布表、频率分步直方图的意义并运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网