题目内容
设数列{an}满足a1=2,a2=6,且对一切n∈N*,有an+2=2an+1-an+2
(1)证明:数列{an+1-an}是等差数列;
(2)求数列{an}的通项公式;
(3)设Tn=
+
+
+…+
,求Tn的取值范围.
(1)证明:数列{an+1-an}是等差数列;
(2)求数列{an}的通项公式;
(3)设Tn=
| 1 |
| 3a1 |
| 1 |
| 4a2 |
| 1 |
| 5a3 |
| 1 |
| (n+2)an |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件推导出a2-a1=6-2=4,(an+2-an+1)-(an+1-an)=2,由此能证明数列{an+1-an}是首项为4,公差为2的等差数列.
(2)由(1)知an+1-an=4+2(n-1)=2n+2,由此利用累加法能求出an=n(n+1).
(3)由
=
=
[
-
],利用裂项求和法求出Tn=
-
<
,由题意知Tn在n∈N*时单调递增,Tn≥T1=
,由此能求出Tn的取值范围.
(2)由(1)知an+1-an=4+2(n-1)=2n+2,由此利用累加法能求出an=n(n+1).
(3)由
| 1 |
| (n+2)an |
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
| 1 |
| 4 |
| 1 |
| 2(n+1)(n+2) |
| 1 |
| 4 |
| 1 |
| 6 |
解答:
(1)证明:∵数列{an}满足a1=2,a2=6,且对一切n∈N*,有an+2=2an+1-an+2,
∴a2-a1=6-2=4,
(an+2-an+1)-(an+1-an)=2,
∴数列{an+1-an}是首项为4,公差为2的等差数列.
(2)解:由(1)知an+1-an=4+2(n-1)=2n+2,
∴a2-a1=4,a3-a2=6,a4-a3=8,…,an-an-1=2n,
累加,得:an=2+4+6+8+…+2n=
=n(n+1).
(3)解:∵
=
=
[
-
],
∴Tn=
+
+
+…+
=
[
-
+
-
+…+
-
]
=
[
-
]
=
-
<
,
由题意知Tn在n∈N*时单调递增,∴Tn≥T1=
,
综上:
≤Tn<
.
∴a2-a1=6-2=4,
(an+2-an+1)-(an+1-an)=2,
∴数列{an+1-an}是首项为4,公差为2的等差数列.
(2)解:由(1)知an+1-an=4+2(n-1)=2n+2,
∴a2-a1=4,a3-a2=6,a4-a3=8,…,an-an-1=2n,
累加,得:an=2+4+6+8+…+2n=
| n(2+2n) |
| 2 |
(3)解:∵
| 1 |
| (n+2)an |
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
∴Tn=
| 1 |
| 3a1 |
| 1 |
| 4a2 |
| 1 |
| 5a3 |
| 1 |
| (n+2)an |
=
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| (n+1)(n+2) |
=
| 1 |
| 4 |
| 1 |
| 2(n+1)(n+2) |
| 1 |
| 4 |
由题意知Tn在n∈N*时单调递增,∴Tn≥T1=
| 1 |
| 6 |
综上:
| 1 |
| 6 |
| 1 |
| 4 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查数列的前n项和的取值范围的确定,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目