题目内容
(1)求证:BG⊥平面PAD;
(2)取AB、PC的中点M、N,求证:MN∥平面PAD;
(3)求二面角A-BC-P的大小.
考点:与二面角有关的立体几何综合题,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(1)由已知得BG⊥AG,由此利用平面PAD⊥平面ABCD,能证明BG⊥平面PAD.
(2)取PD的中点H,连结AH与HN,由已知得四边形AMNH是平行四边形,由此能证明MN∥平面PAD.
(3)由已知得二面角A-BC-P的平面角为∠PBG,由此能求出二面角A-BC-P的大小.
(2)取PD的中点H,连结AH与HN,由已知得四边形AMNH是平行四边形,由此能证明MN∥平面PAD.
(3)由已知得二面角A-BC-P的平面角为∠PBG,由此能求出二面角A-BC-P的大小.
解答:
(1)证明:∵ABCD为菱形,且∠DAB=60°,
∴△ABD为等边三角形,且G为AD的中点,
∴BG⊥AG,
又平面PAD⊥平面ABCD,
∴BG⊥平面PAD.
(2)证明:取PD的中点H,连结AH与HN.
∵H、N分别为PD、PC的中点,
∴HN∥CD,且HN=
CD,
又∵四边形ABCD为菱形,
∴AB∥CD,且AB=CD.
又∵M为AB的中点,∴AM∥CD,且AM=
CD.
∴HN∥AM,且HN=AM,
∴四边形AMNH是平行四边形,
∴AH∥MN,
又∵AH?平面PAD,MN不包含于平面PAD,
∴MN∥平面PAD.…(8分)
(3)解:由前证明可得:PG垂直于平面ABC,AD垂直于平面PGB,
得到:AD垂直BG和BP,又AD平行于BC,
即得:BC垂直于BG和BP,
则二面角A-BC-P的平面角为∠PBG.
∵△ABD为等边三角形,
侧面PAD是一等边三角形,
∴在三角形PBG中,∠PBG=45°,
∴二面角A-BC-P的大小为45°.…(12分)
∴△ABD为等边三角形,且G为AD的中点,
∴BG⊥AG,
又平面PAD⊥平面ABCD,
∴BG⊥平面PAD.
(2)证明:取PD的中点H,连结AH与HN.
∵H、N分别为PD、PC的中点,
∴HN∥CD,且HN=
| 1 |
| 2 |
又∵四边形ABCD为菱形,
∴AB∥CD,且AB=CD.
又∵M为AB的中点,∴AM∥CD,且AM=
| 1 |
| 2 |
∴HN∥AM,且HN=AM,
∴四边形AMNH是平行四边形,
∴AH∥MN,
又∵AH?平面PAD,MN不包含于平面PAD,
∴MN∥平面PAD.…(8分)
(3)解:由前证明可得:PG垂直于平面ABC,AD垂直于平面PGB,
得到:AD垂直BG和BP,又AD平行于BC,
即得:BC垂直于BG和BP,
则二面角A-BC-P的平面角为∠PBG.
∵△ABD为等边三角形,
侧面PAD是一等边三角形,
∴在三角形PBG中,∠PBG=45°,
∴二面角A-BC-P的大小为45°.…(12分)
点评:本题考查直线与平面垂直的证明,考查直线与平面平行的证明,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
已知函数f(x)=
,则f(f(2))=( )
|
| A、0 | ||
B、
| ||
| C、1 | ||
| D、-1 |