题目内容

已知集合A={x|
x+1
x2+x-2
>0},集合B={x|x2+ax+b≤0},且A∪B={x|x>-2},A∩B={x|1<x≤3},则a+b=
 
考点:交集及其运算
专题:集合
分析:由已知得集合A={x丨-2<x<1或x>1},B={x|1≤x≤3},从而x=-1和x=3是方程x2+ax+b=0的两个根,由此能求出a+b.
解答: 解:∵A={x|
x+1
x2+x-2
>0},集合B={x|x2+ax+b≤0},
∴集合A={x丨-2<x<-1或x>1},
∵A∪B={x|x>-2},A∩B={x|1<x≤3},
∴B={x|-1≤x≤3},
∴x=-1和x=3是方程x2+ax+b=0的两个根,
∴x2+ax+b=(x+1)(x-3)=x2-2x-3,
解得a=-2,b=-3.
∴a+b=-5.
故答案为:-5.
点评:本题考查实数和的求法,是基础题,解题时要认真审题,注意交集和并集的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网