题目内容

6.设实数x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ 2x+y≤6\\ y≥\frac{1}{2}\end{array}\right.$,则$y+\frac{1}{2x}$的最大值为$\frac{10}{3}$.

分析 画出约束条件的可行域,求出目标函数的最优解,推出解即可.

解答 解:实数x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ 2x+y≤6\\ y≥\frac{1}{2}\end{array}\right.$,表示的可行域如图:
则$y+\frac{1}{2x}$的最大值的最优解应该在AB线段上,
由$\left\{\begin{array}{l}{2x-y=0}\\{2x+y=6}\end{array}\right.$,可得B($\frac{1}{2}$,$\frac{3}{2}$)
则$y+\frac{1}{2x}$=2x+$\frac{1}{2x}$,x∈($\frac{1}{2}$,$\frac{3}{2}$).
$y+\frac{1}{2x}$=2x+$\frac{1}{2x}$≤$\frac{10}{3}$.x=$\frac{3}{2}$时取得最大值.
故答案为:$\frac{10}{3}$.

点评 本题考查线性规划的简单应用,目标函数的最值的求法,考查转化思想以及数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网