搜索
题目内容
已知曲线C:
与抛物线
的一个交点为M,
为抛物线的焦点,若
,则b的值为
A.
B.-
C.
D.-
试题答案
相关练习册答案
B
试题分析:由于曲线C:
与抛物线
的一个交点为M(x,y),那么在抛物线中,点M到点F的距离为等于点M到准线的距离d=x+1=4,x=3,,而准线方程为x=-1,焦点为(1,0),在曲线中,点M满足椭圆的方程,进而得到参数b的值为-
,选B.
点评:解决该试题的关键是能利用点M的双重身份,考虑在抛物线上满足的关系式得到点M的横坐标,进而代入曲线中得到b的值。
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
已知圆
,椭圆
,若
的离心率为
,如果
相交于
两点,且线段
恰为圆
的直径,求直线
与椭圆
的方程。
已知椭圆
:
(
)的离心率
,直线
与椭圆
交于不同的两点
,以线段
为直径作圆
,圆心为
(Ⅰ)求椭圆
的方程;
(Ⅱ)当圆
与
轴相切的时候,求
的值;
(Ⅲ)若
为坐标原点,求
面积的最大值。
已知椭圆
,点
在椭圆上。
(1)求椭圆的离心率;
(2)若椭圆的短半轴长为
,直线
与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线
的方程。
(本小题满分12分)点
为椭圆
内的一定点,过P点引一直线,与椭圆相交于
两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。
(本小题12分)设
,在平面直角坐标系中,已知向量
,向量
,
,动点
的轨迹为E. 求轨迹E的方程,并说明该方程所表示曲线的形状.
已知
、
分别是双曲线
的左右焦点,以坐标原点
为
圆心,
为半径的圆与双曲线在第一象限的交点为
,则当
的面积等于
时,双曲线的离心率为( )
A.
B.
C.
D.
(本小题满分14分)
已知抛物线
的顶点为坐标原点,焦点在
轴上. 且经过点
,
(1)求抛物线
的方程;
(2)若动直线
过点
,交抛物线
于
两点,是否存在垂直于
轴的直线
被以
为直径的圆截得的弦长为定值?若存在,求出
的方程;若不存在,说明理由.
设椭圆
的左、右顶点分别为
、
,点
在椭圆上且异于
、
两点,
为坐标原点.
(1)若直线
与
的斜率之积为
,求椭圆的离心率;
(2)对于由(1)得到的椭圆
,过点
的直线
交
轴于点
,交
轴于点
,若
,求直线
的斜率.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案