题目内容

已知非零向量
a
、  
b
、  
c
满足
a
+
b
-
c
=
0
,向量
a
b
的夹角为120°,且|
a
|=|
b
|
,则|
a
-
b
|
|
c
|
的比值为
 
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:由题意可得|
c
|2=(
a
+
b
)2
=
a
2
+2|
a
||
b
|
cos120°+
b
2
=3
a
2
,|
c
|=
3
|
a
|,又|
a
-
b
|2
=
a
2
-2|
a
||
b
|cos120°+
b
2
=
a
2
,|
a
-
b
|=|
a
|,即可得出结论.
解答: 解:∵
a
+
b
-
c
=
0
,∴
c
=
a
+
b

∴|
c
|2=(
a
+
b
)2
=
a
2
+2|
a
||
b
|
cos120°+
b
2
=3
a
2
,∴|
c
|=
3
|
a
|,
|
a
-
b
|2
=
a
2
-2|
a
||
b
|cos120°+
b
2
=
a
2
,∴|
a
-
b
|=|
a
|,
|
a
-
b
|
|
c
|
=
3

故答案为
3
点评:本题主要考查向量求模运算,遇模平方法的运用能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网