题目内容
下表是一位母亲给儿子作的成长记录:
根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为
=7.19x+73.93,给出下列结论:
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是145.83cm;
④儿子年龄增加1周岁,身高约增加7.19cm.
其中,正确结论的个数是( )
| 年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
| ? |
| y |
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是145.83cm;
④儿子年龄增加1周岁,身高约增加7.19cm.
其中,正确结论的个数是( )
| A、1 | B、2 | C、3 | D、4 |
考点:命题的真假判断与应用
专题:概率与统计
分析:本题考察统计中的线性回归分析,在根据题目给出的回归方程条件下做出分析,然后逐条判断正误.
解答:
解;线性回归方程为
=7.19x+73.93,
①7.19>0,即y随x的增大而增大,y与x具有正的线性相关关系,①正确;
②回归直线过样本的中心点为(6,117.1),②错误;
③当x=10时,
=145.83,此为估计值,所以儿子10岁时的身高的估计值是145.83cm而不一定是实际值,③错误;
④回归方程的斜率为7.19,则儿子年龄增加1周岁,身高约增加7.19cm,④正确,
故应选:B
| ? |
| y |
①7.19>0,即y随x的增大而增大,y与x具有正的线性相关关系,①正确;
②回归直线过样本的中心点为(6,117.1),②错误;
③当x=10时,
| y |
④回归方程的斜率为7.19,则儿子年龄增加1周岁,身高约增加7.19cm,④正确,
故应选:B
点评:本题考察回归分析的基本概念,属于基础题,容易忽略估计值和实际值的区别.
练习册系列答案
相关题目
已知直线l1:2x-y+1=0,直线l2过点(1,1)倾斜角为直线l1的倾斜角的两倍,则直线l2的方程为( )
| A、4x+3y-7=0 |
| B、4x+3y+1=0 |
| C、4x-y-3=0 |
| D、4x-y+5=0 |