题目内容

设数列{an}满足,点(n,an)(n∈N*)均在函数y=6x-1的图象上,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b2=8,b1+b9=34
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
3
(an-4)(2bn-3)
(n∈N*),Tn为数列{cn}的前n项和,求Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)把点(n,an)(n∈N*)均在函数y=6x-1的图象上,由数列{bn}满足bn+2-2bn+1+bn=0,知{bn}是等差数列,由此能求出bn
(Ⅱ)cn=
3
(an-4)(2bn-3)
=
3
(6n-5)(6n+1)
=
1
2
1
6n-5
-
1
6n+1
),由此利用裂项求和法能求出数列{cn}的前n项和Tn
解答: 解:(Ⅰ)∵数列{an}满足,点(n,an)(n∈N*)均在函数y=6x-1的图象上,
∴an=6n-1,
∵数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),
∴{bn}是等差数列,
∵b2=8,b1+b9=34,
b1+d=8
2b1+8d=34

解得b1=5,d=3,
∴bn=5+(n-1)×3=3n+2.
(Ⅱ)cn=
3
(an-4)(2bn-3)
=
3
(6n-5)(6n+1)
=
1
2
1
6n-5
-
1
6n+1
),
∴Tn=
1
2
1-
1
7
+
1
7
-
1
13
+…+
1
6n-5
-
1
6n+1

=
1
2
(1-
1
6n+1

=
3n
6n+1
点评:本题考查数列的前n项和的通项公式的求法,考查数列的前n项和公式的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网