题目内容
设数列{an}满足,点(n,an)(n∈N*)均在函数y=6x-1的图象上,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b2=8,b1+b9=34
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
(n∈N*),Tn为数列{cn}的前n项和,求Tn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
| 3 |
| (an-4)(2bn-3) |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)把点(n,an)(n∈N*)均在函数y=6x-1的图象上,由数列{bn}满足bn+2-2bn+1+bn=0,知{bn}是等差数列,由此能求出bn.
(Ⅱ)cn=
=
=
(
-
),由此利用裂项求和法能求出数列{cn}的前n项和Tn.
(Ⅱ)cn=
| 3 |
| (an-4)(2bn-3) |
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
解答:
解:(Ⅰ)∵数列{an}满足,点(n,an)(n∈N*)均在函数y=6x-1的图象上,
∴an=6n-1,
∵数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),
∴{bn}是等差数列,
∵b2=8,b1+b9=34,
∴
,
解得b1=5,d=3,
∴bn=5+(n-1)×3=3n+2.
(Ⅱ)cn=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
∴an=6n-1,
∵数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),
∴{bn}是等差数列,
∵b2=8,b1+b9=34,
∴
|
解得b1=5,d=3,
∴bn=5+(n-1)×3=3n+2.
(Ⅱ)cn=
| 3 |
| (an-4)(2bn-3) |
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 13 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
=
| 1 |
| 2 |
| 1 |
| 6n+1 |
=
| 3n |
| 6n+1 |
点评:本题考查数列的前n项和的通项公式的求法,考查数列的前n项和公式的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目