题目内容
等比数列{an}满足,8a2+a5=0,则公比q=( )
| A、2 | B、-2 | C、±2 | D、3 |
考点:等比数列的性质
专题:等差数列与等比数列
分析:由已知变形可得q3=
=-8,开三次方可得.
| a5 |
| a2 |
解答:
解:∵等比数列{an}中8a2+a5=0,
∴8a2=-a5,
∴q3=
=-8,
解得q=-2
故选:B
∴8a2=-a5,
∴q3=
| a5 |
| a2 |
解得q=-2
故选:B
点评:本题考查等比数列的通项公式,属基础题.
练习册系列答案
相关题目
命题“存在x∈R,x3-x3+1>0”的否定是( )
| A、不存在x∈R,x3-x3+1≤0 |
| B、存在x∈R,x3-x3+1≤0 |
| C、对任意的x∈R,x3-x3+1≤0 |
| D、对任意的x∈R,x3-x3+1>0 |
定义在R上的偶函数f(x),满足f(x+π)=f(x),且当x∈[0,
]时,f(x)=sinx,则f(
)的值为( )
| π |
| 2 |
| 5π |
| 3 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|
已知双曲线
-
=1(a>0,b>0)的左、右焦点分别为F1,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(4,3),则此双曲线的方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
△ABC中,sinA<sinB是A<B的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |