题目内容
19.某班级要从4名男生、2名女生中选派4人参加某次社区服务,则所选的4人中至少有1名女生的概率为( )| A. | $\frac{14}{15}$ | B. | $\frac{8}{15}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{15}$ |
分析 先求出基本事件总数,所选的4人中至少有1名女生的对立事件是所选4人都是男生,由此能求出所选的4人中至少有1名女生的概率.
解答 解:∵某班级要从4名男生、2名女生中选派4人参加某次社区服务,
∴基本事件总数n=${C}_{6}^{4}$=15,
∵所选的4人中至少有1名女生的对立事件是所选4人都是男生,
∴所选的4人中至少有1名女生的概率为:
p=1-$\frac{{C}_{4}^{4}}{{C}_{6}^{4}}$=$\frac{14}{15}$.
故选:A.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
练习册系列答案
相关题目
9.已知点M是△ABC所在平面内的一点,且满足5$\overrightarrow{AM}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,则△AMB与△ABC的面积比为( )
| A. | $\frac{5}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{7}{5}$ | D. | $\frac{5}{7}$ |
10.把复数z的共轭复数记作$\overline z$,已知(3-4i)$\overline z$=1+2i,则z=( )
| A. | $\frac{1}{5}$+$\frac{2}{5}$i | B. | -$\frac{1}{5}$+$\frac{2}{5}$i | C. | -$\frac{1}{5}$-$\frac{2}{5}$i | D. | $\frac{1}{5}$-$\frac{2}{5}i$ |
7.已知函数f(x)=(x-a-1)(2x-a),g(x)=ln(x-a),若当x>a时,f(x)•g(x)≥0恒成立,则实数a的取值范围是( )
| A. | [0,+∞) | B. | [-2,0] | C. | (-∞,2] | D. | [-2,+∞) |
4.已知命题p:?x∈R,cosx>sinx,命题q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,则下列判断正确的是( )
| A. | 命题p∨q是假命题 | B. | 命题p∧q是真命题 | ||
| C. | 命题p∨(¬q)是假命题 | D. | 命题p∧(¬q)是真命题 |
11.已知$\frac{zi}{i-1}=i+1$,则复数z在复平面上所对应的点位于( )
| A. | 实轴上 | B. | 虚轴上 | C. | 第一象限 | D. | 第二象限 |
9.若x,y满足约束条件$\left\{\begin{array}{l}{x+1≤0}\\{x-y+2≥0}\\{x+2y+2≥0}\end{array}\right.$且目标函数z=ax-y取得最大值的点有无数个,则z的最小值等于( )
| A. | -2 | B. | -$\frac{3}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |