题目内容
14.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2},x≤a}\\{{{log}_2}({x+1}),x>a}\end{array}}$在区间(-∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是[-1,0].分析 根据二次函数的性质以及对数函数的性质求出a的范围即可.
解答 解:由y=x2在(-∞,0)递减,故a≤0,
由x+1>0,解得:x>-1,故a≥-1,
故答案为:[-1,0].
点评 本题考查了二次函数以及对数函数的性质,考查函数的单调性问题,是一道基础题.
练习册系列答案
相关题目
4.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为( )
| A. | a,b,c,d全为正数 | B. | a,b,c,d中至多有一个负数 | ||
| C. | a,b,c,d中至少有一个正数 | D. | a,b,c,d全都大于等于0 |
9.若非空集合A,B满足A?B,则“x∈A”是“x∈B”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
19.某班级要从4名男生、2名女生中选派4人参加某次社区服务,则所选的4人中至少有1名女生的概率为( )
| A. | $\frac{14}{15}$ | B. | $\frac{8}{15}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{15}$ |
6.若直线y=2x上存在点(x,y)满足条件$\left\{\begin{array}{l}x+y-3≤0\\ x-2y-3≥0\\ x≥m.\end{array}\right.$,则实数m的最大值为( )
| A. | -2 | B. | -1 | C. | 1 | D. | 3 |
3.已知命题p:函数f(x)=|2cos2x-1|的最小正周期为π;
命题q:若函数f(x-2)为奇函数,则f(x)关于(-2,0)对称,则下列命题是真命题的是( )
命题q:若函数f(x-2)为奇函数,则f(x)关于(-2,0)对称,则下列命题是真命题的是( )
| A. | p∧q | B. | p∨q | C. | (¬p)∧(¬q) | D. | p∧(¬q) |
4.在等差数列{an}中,a2、a13是方程x2-x-3=0的两个根,则前14项的和S14为( )
| A. | 20 | B. | 16 | C. | 12 | D. | 7 |