题目内容

10.把复数z的共轭复数记作$\overline z$,已知(3-4i)$\overline z$=1+2i,则z=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$+$\frac{2}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}i$

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简,求得$\overline{z}$,则z可求.

解答 解:∵$\overline z=\frac{1+2i}{3-4i}=\frac{{({1+2i})({3+4i})}}{{({3-4i})({3+4i})}}=-\frac{1}{5}+\frac{2}{5}i$,
∴$z=-\frac{1}{5}-\frac{2}{5}i$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网