题目内容
已知
=(cos
+sin
,-sin
),
=(cos
-sin
,2cos
).
(Ⅰ)设f(x)=
•
,求f(x)的最小正周期和单调递减区间;
(Ⅱ)设有不相等的两个实数x1,x2∈[-
,
],且f(x1)=f(x2)=1,求x1+x2的值.
| AC |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| BC |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
(Ⅰ)设f(x)=
| AC |
| BC |
(Ⅱ)设有不相等的两个实数x1,x2∈[-
| π |
| 2 |
| π |
| 2 |
(Ⅰ)由f(x)=
•
得f(x)=(cos
+sin
)•(cos
-sin
)+(-sin
)•2cos
.(4分)
=cos2
-sin2
-2sin
cos
=cosx-sinx=
(cosx•
-sinx•
)
=
cos(x+
)(6分)
所以f(x)的最小正周期T=2π,(8分)
又由2kπ≤x+
≤π+2kπ,k∈Z,
得-
+2kπ≤x≤
+2kπ,k∈Z、
故f(x)的单调递减区间是[-
+2kπ,
+2kπ](k∈Z)、.(10分)
(Ⅱ)由f(x)=1得
cos(x+
)=1,
故cos(x+
)=
.
又x∈[-
,
],于是有x+
∈[-
,
π],得x1=0,x2=-
(12分)
所以x1+x2=-
.(13分)
| AC |
| BC |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
=cos2
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
=cosx-sinx=
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 2 |
| π |
| 4 |
所以f(x)的最小正周期T=2π,(8分)
又由2kπ≤x+
| π |
| 4 |
得-
| π |
| 4 |
| 3π |
| 4 |
故f(x)的单调递减区间是[-
| π |
| 4 |
| 3π |
| 4 |
(Ⅱ)由f(x)=1得
| 2 |
| π |
| 4 |
故cos(x+
| π |
| 4 |
| ||
| 2 |
又x∈[-
| π |
| 2 |
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 4 |
| π |
| 2 |
所以x1+x2=-
| π |
| 2 |
练习册系列答案
相关题目