题目内容

17.如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=$\frac{\sqrt{3}}{3}$
(1)求△ACD的面积;
(2)若BC=2$\sqrt{3}$,求AB的长.

分析 (1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;
(2)利用余弦定理求出AC,通过BC=2$\sqrt{3}$,利用正弦定理求解AB的长.

解答 解:(1)因为∠D=2∠B,cos∠B=$\frac{\sqrt{3}}{3}$,
所以cosD=cos2B=2cos2B-1=-$\frac{1}{3}$.…(3分)
因为∠D∈(0,π),
所以sinD=$\frac{2\sqrt{2}}{3}$.…(5分)
因为 AD=1,CD=3,
所以△ACD的面积S=$\frac{1}{2}AD•CD•sinD$=$\frac{1}{2}×1×3×\frac{2\sqrt{2}}{3}$=$\sqrt{2}$.…(7分)
(2)在△ACD中,AC2=AD2+DC2-2AD•DC•cosD=12.
所以AC=2$\sqrt{3}$.…(9分)
因为BC=2$\sqrt{3}$,$\frac{AC}{sinB}=\frac{AB}{sin∠ACB}$,…(11分)
所以$\frac{2\sqrt{3}}{sinB}=\frac{AB}{sin(π-2B)}$=$\frac{AB}{\frac{2\sqrt{3}}{3}sinB}$.
所以 AB=4.…(13分)

点评 本题考查余弦定理以及正弦定理的应用,基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网