题目内容

在平面直角坐标系xOy中,已知AB是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的不平行于对称轴的弦,M为AB的中点,记OM,AB的斜率分别为kOM,kAB,则kOM•kAB=-
b2
a2

(1)类比椭圆的上述性质,给出一个在双曲线中也成立的性质;
(2)证明(1)中的结论.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)类比椭圆的性质,直接叙述.
(2)设A(x1,y1),A(x1,y1),M(x0,y0)利用点差法能证明kOM•kAB=
b2
a2
解答: (1)解:在平面直角坐标系xOy中,已知AB是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,记OM,AB的斜率分别为kOM,kAB,则kOM•kAB=
b2
a2
.…(4分)
(2)证明:设A(x1,y1),A(x1,y1),M(x0,y0
x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1
,得:
x12-x22
a2
-
y12-y22
b2
=0
,(6分)
(x1+x2)(x1-x2)
a2
-
(y1+y2)(y1-y2)
b2
=0,
∵M(x0,y0)为AB的中点
∴x1+x2=2x0,y1+y2=2y0,(9分)
2x0(x1-x2)
a2
-
2y0(y1-y2)
b2
=0,
∴kAB=
y1-y2
x1-x2
=
b2 x0
a2y0
,(11分)
∵kOM=
y0
x0
,(13分)
∴kOM•kAB=
b2
a2
.(16分)
点评:本题考查双曲线性质的类比叙述,考查两直线的斜率乘积为定值的证明,解题时要认真审题,注意点差法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网