题目内容
设数列{an}的前n项和为Sn,若对于一切n∈N+,
=t(t为非零常数),则称数列{an}为“和谐数列”,t为“和谐比”.
(Ⅰ)设数列{bn}是首项为1,公差为2的等差数列,证明:数列{bn}为“和谐数列”,并求出“和谐比”;
(Ⅱ)在(Ⅰ)的条件下,设cn=bn2bn,n∈N+,求数列{cn}的前n项和Tn.
| Sn |
| S2n |
(Ⅰ)设数列{bn}是首项为1,公差为2的等差数列,证明:数列{bn}为“和谐数列”,并求出“和谐比”;
(Ⅱ)在(Ⅰ)的条件下,设cn=bn2bn,n∈N+,求数列{cn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用等差数列的前n项和公式即可得出;
(2)利用“错位相减法”、等比数列的前n项和公式即可得出.
(2)利用“错位相减法”、等比数列的前n项和公式即可得出.
解答:
(1)证明:设数列{bn}的前n项和为Bn,
∵数列{bn}是首项为1,公差为2的等差数列,
∴Bn=n×1+
×2=n2,B2n=4n2.
∴t=
=
=
.
(2)解:由已知条件易求bn=2n-1,
∴cn=bn.2bn=(2n-1)•22n-1
∴Tn=1×21+3×23+…+(2n-1)•22n-1,
∴4Tn=23+3×25+…+(2n-3)•22n-1+(2n-1)•22n+1,
两式相减可得:-3Tn=2+2×23+2×25+…+2×22n-1-(2n-1)•22n+1
=
-2-(2n-1)•22n+1
=
•22n+1-
-(2n-1)•22n+1
=(
-2n)•22n+1-
.
∴Tn=
•22n+1+
.
∵数列{bn}是首项为1,公差为2的等差数列,
∴Bn=n×1+
| n(n-1) |
| 2 |
∴t=
| Bn |
| B2n |
| n2 |
| 4n2 |
| 1 |
| 4 |
(2)解:由已知条件易求bn=2n-1,
∴cn=bn.2bn=(2n-1)•22n-1
∴Tn=1×21+3×23+…+(2n-1)•22n-1,
∴4Tn=23+3×25+…+(2n-3)•22n-1+(2n-1)•22n+1,
两式相减可得:-3Tn=2+2×23+2×25+…+2×22n-1-(2n-1)•22n+1
=
| 4(4n-1) |
| 4-1 |
=
| 2 |
| 3 |
| 10 |
| 3 |
=(
| 5 |
| 3 |
| 10 |
| 3 |
∴Tn=
| 6n-5 |
| 9 |
| 10 |
| 9 |
点评:本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目