题目内容
函数y=f(x),自变量x由x0改变到x0+△x时,函数的改变量△y等于( )
| A、y=f(x0+△x) |
| B、y=f(x0)+△x |
| C、y=f(x0)•△x |
| D、y=f(x0+△x)-f(x0) |
考点:变化的快慢与变化率
专题:计算题,导数的概念及应用
分析:根据题意函数y=f(x),我们知道当自变量x变化时,因变量也要发生变化,因此把x0和x0+△x分别代入函数y=f(x),然后相减求出△y.
解答:
解:∵自变量x由x0改变到x0+△x,
当x=x0,y=f(x0),
当x=x0+△x,y=f(x0+△x),
∴△y=f(x0+△x)-f(x0),
故选D.
当x=x0,y=f(x0),
当x=x0+△x,y=f(x0+△x),
∴△y=f(x0+△x)-f(x0),
故选D.
点评:此题是一道基础题,考查了函数自变量与因变量之间的关系.
练习册系列答案
相关题目
已知集合A={1,2,3},函数f(x)的定义域、值域都是A,且对于任意i∈A,f(i)≠i,设a1,a2,a3是1,2,3的任意一个排列,定义数表
,若两个数表对应位置上至少有一个数不同,就称这是两个不同的数表,那么满足条件的不同的数表共有( )
|
| A、12个 | B、15个 |
| C、18个 | D、20个 |
已知|
|=|
|=
,
•
=0,(
-
)•(
-
)=0,则|
|的最大值是( )
| a |
| b |
| 2 |
| a |
| b |
| a |
| c |
| b |
| c |
| c |
| A、2 | B、0 | C、1 | D、4 |
不等式(x+2y-1)(x-y+3)>0所表示的平面区域为( )
| A、 |
| B、 |
| C、 |
| D、 |
下列选项叙述错误的是( )
| A、若p∨q为真命题,则p,q均为真命题 |
| B、若命题p:?x∈R,x2+x+1≠0,则¬p:?x∈R,x2+x+1=0 |
| C、命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0则x=1” |
| D、“x>2”是“x2-3x+2>0”的充分不必要条件 |
从1,2,3,4,5,6,7这七个数字中任取两个奇数和一个偶数,组成没有重复数字的三位数,其个数为( )
| A、432 | B、288 |
| C、216 | D、108 |
已知(1+i)•z=-i,那么复数|z|-z对应的点位于复平面内的( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |