题目内容

已知双曲线
x2
a2
-
y2
b2
=1与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2-a2,联立求得a和c的关系式,然后求得离心率e.
解答: 解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,
∵抛物线的焦点和双曲线的焦点相同,
∴p=2c,c=2,
∵设P(m,n),由抛物线定义知:
|PF|=m+
p
2
=m+2=5,∴m=3.
∴P点的坐标为(3,
24
),
a2+b2=4
9
a2
-
24
b2
=1
解得:
a2=1
b2=3
,c=2
则双曲线的离心率为2,
故答案为:2.
点评:本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网