题目内容
某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )
| A、80 | B、40 | C、60 | D、20 |
考点:分层抽样方法
专题:概率与统计
分析:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.
解答:
解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,
一、二、三、四年级的学生比为4:3:2:1,
∴三年级要抽取的学生是
×200=40,
故选:B.
一、二、三、四年级的学生比为4:3:2:1,
∴三年级要抽取的学生是
| 2 |
| 4+3+2+1 |
故选:B.
点评:本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.
练习册系列答案
相关题目
已知函数f(x)=
,若f(a)+f(f(1))=0,则实数a的值等于( )
|
| A、-28 | B、-10 |
| C、10 | D、28 |
设(5x-
)4的展开式的各项系数之和为M,二项式系数之和为N,则M-N=( )
| 1 |
| x |
| A、-240 | B、150 |
| C、0 | D、240 |
已知A(3,1),B(2,-1),则
的坐标是( )
| BA |
| A、(-2,-1) |
| B、(2,1) |
| C、(1,2) |
| D、(-1,-2) |
函数f(x)=x+log2x的零点所在区间为( )
A、(0,
| ||||
B、(
| ||||
C、(
| ||||
D、(
|
已知直线的点斜式方程是-3y-2=
(x-1),那么此直线的倾斜角为( )
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
对于非零向量
、
,下列命题正确的是( )
| a |
| b |
A、
| ||||||||||||
B、
| ||||||||||||
C、
| ||||||||||||
D、
|
如图,
、
、
分别是240°角的正弦线、余弦线、正切线,则其数量一定有( )

| MP |
| OM |
| AT |
| A、MP<OM<AT |
| B、OM<MP<AT |
| C、AT<OM<MP |
| D、OM<AT<MP |
用一平面去截体积为36π的球,所得截面的面积为π,则球心到截面的距离为( )
| A、8 | ||
| B、9 | ||
C、2
| ||
| D、3 |