题目内容

8.已知F是抛物线x2=4y的焦点,直线y=kx-1与该抛物线交于第一象限内的两点A,B,若|AF|=4|FB|,则k的值是(  )
A.$\frac{5}{4}$B.$\frac{3}{4}\sqrt{2}$C.$\frac{{\sqrt{17}}}{4}$D.$\frac{{2\sqrt{3}}}{3}$

分析 根据抛物线方程求出准线方程与焦点坐标,利用抛物线的定义表示出|AF|与|FB|,再利用直线与抛物线方程组成方程组,结合根与系数的关系,求出k的值即可.

解答 解:∵抛物线方程为x2=4y,
∴p=2,准线方程为y=-1,焦点坐标为F(0,1);
设点A(x1,y1),B(x2,y2),
则|AF|=y1+$\frac{p}{2}$=y1+1,|FB|=y2+$\frac{p}{2}$=y2+1;
∵|AF|=4|FB|,
∴y1+1=4(y2+1),即y1=4y2+3;
联立方程组$\left\{\begin{array}{l}{y=kx-1}\\{{x}^{2}=4y}\end{array}\right.$,
消去x,得y2+(2-4k2)y+1=0,
由根与系数的关系得,y1+y2=4k2-2,
即(4y2+3)+y2=4k2-2,
解得y2=$\frac{4}{5}$k2-1;
代入直线方程y=kx-1中,得x2=$\frac{4}{5}$k,
再把x2、y2代入抛物线方程x2=4y中,
得$\frac{16}{25}$k2=$\frac{16}{5}$k2-4,
解得k=$\frac{5}{4}$,或k=-$\frac{5}{4}$(不符合题意,应舍去),
∴k=$\frac{5}{4}$.
故选:A.

点评 本题考查了抛物线的标准方程与几何性质的应用问题,也考查了直线与抛物线的综合应用问题,考查了方程思想的应用问题,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网