题目内容

3.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1\begin{array}{l}{\;}{(a>0)}\end{array}$的渐近线方程为$\frac{x}{2}±\frac{y}{3}=0$,则a的值为(  )
A.4B.3C.2D.1

分析 路双曲线的渐近线方程,求出a即可.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1\begin{array}{l}{\;}{(a>0)}\end{array}$的渐近线方程为:$\frac{x}{a}±\frac{y}{3}=0$,又曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1\begin{array}{l}{\;}{(a>0)}\end{array}$的渐近线方程为$\frac{x}{2}±\frac{y}{3}=0$,可得a=2.
故选:C.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网