题目内容
19.在平面直角坐标系xOy中,点P(x0,y0)在曲线y=x2(x>0)上,已知A(0,-1)Pn(${x}_{0}^{n}$,${y}_{0}^{n}$),n∈N,记直线APn的斜率为kn.(1)若k1=2,求P1的坐标;
(2)若k1为偶数,求证:kn为偶数.
分析 (1)运用两点的斜率公式,可得$\frac{{y}_{0}+1}{{x}_{0}}$=$\frac{{{x}_{0}}^{2}+1}{{x}_{0}}$=2,解方程可得P1的坐标;
(2)设k1=2p(p∈N*),运用直线 的斜率公式,求得x0,再求kn,运用二项式定理,讨论n为偶数或奇数,即可得证.
解答 解:(1)由k1=2,可得$\frac{{y}_{0}+1}{{x}_{0}}$=$\frac{{{x}_{0}}^{2}+1}{{x}_{0}}$=2,
解得x0=1,y0=1,则P1(1,1):
(2)证明:设k1=2p(p∈N*),即$\frac{{y}_{0}+1}{{x}_{0}}$=$\frac{{{x}_{0}}^{2}+1}{{x}_{0}}$=2p,
解得x0=p±$\sqrt{{p}^{2}-1}$,
由y0=x02,可得kn=$\frac{{{y}_{0}}^{n}+1}{{{x}_{0}}^{n}}$=$\frac{{{x}_{0}}^{2n}+1}{{{x}_{0}}^{n}}$=x0n+$\frac{1}{{{x}_{0}}^{n}}$,
当x0=p+$\sqrt{{p}^{2}-1}$时,kn=(p+$\sqrt{{p}^{2}-1}$)n+$\frac{1}{(p+\sqrt{{p}^{2}-1})^{n}}$
=(p+$\sqrt{{p}^{2}-1}$)n+(p-$\sqrt{{p}^{2}-1}$)n;
同理当x0=p-$\sqrt{{p}^{2}-1}$时,kn=(p+$\sqrt{{p}^{2}-1}$)n+(p-$\sqrt{{p}^{2}-1}$)n.
①当n=2m(m∈N*),kn=2$\sum_{k=0}^{m}$${C}_{n}^{2k}$pn-2k(p2-1)k,即有kn为偶数;
②当n=2m+1(m∈N*),kn=2$\sum_{k=0}^{m}$${C}_{n}^{2k}$pn-2k(p2-1)k,即有kn为偶数.
综上可得,kn为偶数.
点评 本题考查二项式定理的运用,直线的斜率公式的运用,以及点满足抛物线的方程,考查分类讨论和化简整理的运算能力,属于难题.
| A. | $(\frac{π}{12},0)$ | B. | $(\frac{π}{3},-\frac{1}{4})$ | C. | $(\frac{π}{3},0)$ | D. | $(\frac{7π}{24},0)$ |
| A. | 二分法求方程x2-3=0的近似解 | B. | 解方程组$\left\{\begin{array}{l}{x+y+5=0}\\{x-y+3=0}\end{array}\right.$ | ||
| C. | 求半径为3的圆的面积 | D. | 判断函数y=x2在R上的单调性 |
| A. | 只有一个信箱有信 | B. | 至多有1个信箱有信 | ||
| C. | 每个信箱都有信 | D. | 至少有一个信箱有信 |