题目内容

14.如图:在四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=DA=DC=2.
(1)若M、N分别是PD、AB的中点,证明:MN∥平面PBC;
(2)求二面角C-BP-D的大小.

分析 (1)欲证MN∥平面PBC,根据MN?平面MNE,可先证平面MNE∥平面PBC,取CD中点E,连接ME,NE,根据中位线可知ME∥PC,NE∥BC,又ME,NE?平面MNE,ME∩NE=E,满足平面与平面平行的判定定理,最后根据性质定理可知结论;
(2)利用面积射影法,求出二面角C-BP-D的大小.

解答 (1)证明:取CD中点E,连接ME,NE,
由已知M、N分别是PD、AB的中点,
∴ME∥PC,NE∥BC
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PBC,
所以,MN∥平面PBC;
(2)解:作DO⊥PC,则DO⊥平面PBC,△OPB为△DPB在平面中的射影,
因为△OPB中,PO=$\sqrt{2}$,所以S△OPB=$\frac{1}{2}×\sqrt{2}×2$=$\sqrt{2}$.
因为△DPB中,PD=2,BD=2$\sqrt{2}$,所以S△DPB=$\frac{1}{2}×2\sqrt{2}×2$=2$\sqrt{2}$,
所以二面角C-BP-D的余弦值为$\frac{1}{2}$,大小为60°.

点评 本小题主要考查直线与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网