题目内容

12.已知函数f(x)=x2+nx+m,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围是[0,4).

分析 由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,从而求得m=0;从而化简f(f(x))=(x2+nx)(x2+nx+n)=0,从而讨论求得.

解答 解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,-n不是x2+nx+n=0的根,
故△=n2-4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故答案为:[0,4).

点评 本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网