题目内容
已知点P在双曲线
-
=1上,且左右两个顶点分别为A1、A2,记直线PA1的斜率为k1,直线PA2的斜率为k2,
(1)若P点的横坐标为5,则k1•k2= .
(2)若直线PA1的斜率k1的取值范围是[-
,-
],则直线PA2的斜率k2的取值范围是 .
| x2 |
| 9 |
| y2 |
| 4 |
(1)若P点的横坐标为5,则k1•k2=
(2)若直线PA1的斜率k1的取值范围是[-
| 1 |
| 9 |
| 1 |
| 18 |
考点:直线与圆锥曲线的关系,双曲线的简单性质
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知得P(5,
)或P(5,-
),A1(-3,0),A2(3,0),由此能求出k1k2=
.
(2)设P(x0,y0),则
-
=1,
=
,由A1(-3,0),A2(3,0),知k1k2=
•
=
=
,由此利用直线PA1的斜率k1的取值范围能求出直线PA2的斜率k2的取值范围.
| 8 |
| 3 |
| 8 |
| 3 |
| 4 |
| 9 |
(2)设P(x0,y0),则
| x02 |
| 9 |
| y02 |
| 4 |
| y02 |
| x02-9 |
| 4 |
| 9 |
| y0 |
| x0+3 |
| y0 |
| x0-3 |
| y02 |
| x02-9 |
| 4 |
| 9 |
解答:
解:(1)∵点P在双曲线
-
=1上,且左右两个顶点分别为A1、A2,
P点的横坐标为5,
∴P(5,
)或P(5,-
),
A1(-3,0),A2(3,0),
∴取P(5,
),得k1=
=
,k2=
=
,
∴k1k2=
;
取P(5,-
),得k1=
=-
,k2=-
=-
,
∴k1k2=
.
综上,k1k2=
.
故答案为:
.
(2)设P(x0,y0),则
-
=1,
∴
=
,
∵A1(-3,0),A2(3,0),
∴k1k2=
•
=
=
,
∵直线PA1的斜率k1的取值范围是[-
,-
],
∴直线PA2的斜率k2的取值范围是[-8,-4].
故答案为:[-8,-4].
| x2 |
| 9 |
| y2 |
| 4 |
P点的横坐标为5,
∴P(5,
| 8 |
| 3 |
| 8 |
| 3 |
A1(-3,0),A2(3,0),
∴取P(5,
| 8 |
| 3 |
| ||
| 8 |
| 1 |
| 3 |
| ||
| 2 |
| 4 |
| 3 |
∴k1k2=
| 4 |
| 9 |
取P(5,-
| 8 |
| 3 |
-
| ||
| 8 |
| 1 |
| 3 |
| ||
| 2 |
| 4 |
| 3 |
∴k1k2=
| 4 |
| 9 |
综上,k1k2=
| 4 |
| 9 |
故答案为:
| 4 |
| 9 |
(2)设P(x0,y0),则
| x02 |
| 9 |
| y02 |
| 4 |
∴
| y02 |
| x02-9 |
| 4 |
| 9 |
∵A1(-3,0),A2(3,0),
∴k1k2=
| y0 |
| x0+3 |
| y0 |
| x0-3 |
| y02 |
| x02-9 |
| 4 |
| 9 |
∵直线PA1的斜率k1的取值范围是[-
| 1 |
| 9 |
| 1 |
| 18 |
∴直线PA2的斜率k2的取值范围是[-8,-4].
故答案为:[-8,-4].
点评:本题考查两直线的斜率之积的求法,考查直线的斜率的取值范围的求法,解题时要认真审题,注意椭圆性质的合理运用.
练习册系列答案
相关题目
已知a1=3,an+1=
,试通过计算a2,a3,a4,a5的值推测出an=( )
| 3an |
| an+3 |
A、
| ||
B、
| ||
C、
| ||
D、
|